199 research outputs found

    Density-functional study of defects in two-dimensional circular nematic nanocavities

    Full text link
    We use density--functional theory to study the structure of two-dimensional defects inside a circular nematic nanocavity. The density, nematic order parameter, and director fields, as well as the defect core energy and core radius, are obtained in a thermodynamically consistent way for defects with topological charge k=+1k=+1 (with radial and tangential symmetries) and k=+1/2k=+1/2. An independent calculation of the fluid elastic constants, within the same theory, allows us to connect with the local free--energy density predicted by elastic theory, which in turn provides a criterion to define a defect core boundary and a defect core free energy for the two types of defects. The radial and tangential defects turn out to have very different properties, a feature that a previous Maier--Saupe theory could not account for due to the simplified nature of the interactions --which caused all elastic constants to be equal. In the case with two k=+1/2k=+1/2 defects in the cavity, the elastic r\'egime cannot be reached due to the small radii of the cavities considered, but some trends can already be obtained.Comment: 9 figures. Accepted for publication in liquid crystal

    Nonlinear Effects in the TGB_A Phase

    Full text link
    We study the nonlinear interactions in the TGB_A phase by using a rotationally invariant elastic free energy. By deforming a single grain boundary so that the smectic layers undergo their rotation within a finite interval, we construct a consistent three-dimensional structure. With this structure we study the energetics and predict the ratio between the intragrain and intergrain defect spacing, and compare our results with those from linear elasticity and experiment.Comment: 4 pages, RevTeX, 2 included eps figure

    Structure of smectic defect cores: an X-ray study of 8CB liquid crystal ultra-thin films

    Get PDF
    We study the structure of very thin liquid crystal films frustrated by antagonistic anchorings in the smectic phase. In a cylindrical geometry, the structure is dominated by the defects for film thicknesses smaller than 150 nm and the detailed topology of the defects cores can be revealed by x-ray diffraction. They appear to be split in half tube-shaped Rotating Grain Boundaries (RGB). We determine the RGB spatial extension and evaluate its energy per unit line. Both are significantly larger than the ones usually proposed in the literatureComment: 4 page

    Fluctuations of topological disclination lines in nematics: renormalization of the string model

    Full text link
    The fluctuation eigenmode problem of the nematic topological disclination line with strength ±1/2\pm 1/2 is solved for the complete nematic tensor order parameter. The line tension concept of a defect line is assessed, the line tension is properly defined. Exact relaxation rates and thermal amplitudes of the fluctuations are determined. It is shown that within the simple string model of the defect line the amplitude of its thermal fluctuations is significantly underestimated due to the neglect of higher radial modes. The extent of universality of the results concerning other systems possessing line defects is discussed.Comment: 6 pages, 3 figure

    Towards the grain boundary phonon scattering problem: an evidence for a low-temperature crossover

    Full text link
    The problem of phonon scattering by grain boundaries is studied within the wedge disclination dipole (WDD) model. It is shown that a specific q-dependence of the phonon mean free path for biaxial WDD results in a low-temperature crossover of the thermal conductivity, Îş\kappa. The obtained results allow to explain the experimentally observed deviation of Îş\kappa from a T3T^3 dependence below 0.1K0.1K in LiFLiF and NaClNaCl.Comment: 4 pages, 2 figures, submitted to J.Phys.:Condens.Matte

    Iterated Moire Maps and Braiding of Chiral Polymer Crystals

    Full text link
    In the hexagonal columnar phase of chiral polymers a bias towards cholesteric twist competes with braiding along an average direction. When the chirality is strong, screw dislocations proliferate, leading to either a tilt grain boundary phase or a new "moire state" with twisted bond order. Polymer trajectories in the plane perpendicular to their average direction are described by iterated moire maps of remarkable complexity.Comment: 10 pages (plain tex) 3 figures uufiled and appende

    Electrostatic self-force in (2+1)-dimensional cosmological gravity

    Get PDF
    Point sources in (2+1)-dimensional gravity are conical singularities that modify the global curvature of the space giving rise to self-interaction effects on classical fields. In this work we study the electrostatic self-interaction of a point charge in the presence of point masses in (2+1)-dimensional gravity with a cosmological constant.Comment: 9 pages, Late

    Scaling of the elastic contribution to the surface free energy of a nematic on a sawtoothed substrate

    Get PDF
    We characterize the elastic contribution to the surface free energy of a nematic in presence of a sawtooth substrate. Our findings are based on numerical minimization of the Landau-de Gennes model and analytical calculations on the Frank-Oseen theory. The nucleation of disclination lines (characterized by non-half-integer winding numbers) in the wedges and apexes of the substrate induces a leading order proportional to qlnq to the elastic contribution to the surface free energy density, q being the wavenumber associated with the substrate periodicity.Comment: 7 pages, 6 figures, accepted for publication in Physical Review

    Close Packing of Atoms, Geometric Frustration and the Formation of Heterogeneous States in Crystals

    Full text link
    To describe structural peculiarities in inhomogeneous media caused by the tendency to the close packing of atoms a formalism based on the using of the Riemann geometry methods (which were successfully applied lately to the description of structures of quasicrystals and glasses) is developed. Basing on this formalism we find in particular the criterion of stability of precipitates of the Frank-Kasper phases in metallic systems. The nature of the ''rhenium effect'' in W-Re alloys is discussed.Comment: 14 pages, RevTex, 2 PostScript figure

    Classification of unit-vector fields in convex polyhedra with tangent boundary conditions

    Full text link
    A unit-vector field n on a convex three-dimensional polyhedron P is tangent if, on the faces of P, n is tangent to the faces. A homotopy classification of tangent unit-vector fields continuous away from the vertices of P is given. The classification is determined by certain invariants, namely edge orientations (values of n on the edges of P), kink numbers (relative winding numbers of n between edges on the faces of P), and wrapping numbers (relative degrees of n on surfaces separating the vertices of P), which are subject to certain sum rules. Another invariant, the trapped area, is expressed in terms of these. One motivation for this study comes from liquid crystal physics; tangent unit-vector fields describe the orientation of liquid crystals in certain polyhedral cells.Comment: 21 pages, 2 figure
    • …
    corecore